Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes

Ismail Aydogdu Department of Mathematics

Joint work with Abidin KAYA Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes

$\mathbb{Z}_2\mathbb{Z}_4$ -additive Codes

A $\mathbb{Z}_2\mathbb{Z}_4$ -additive code C is defined to be a subgroup of $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$ where $\alpha + 2\beta = n$.

$\mathbb{Z}_2\mathbb{Z}_4$ -additive Codes

A $\mathbb{Z}_2\mathbb{Z}_4$ -additive code C is defined to be a subgroup of $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$ where $\alpha + 2\beta = n$. If $\beta = 0$ then $\mathbb{Z}_2\mathbb{Z}_4$ - additive codes are just binary linear codes, and if $\alpha = 0$, then $\mathbb{Z}_2\mathbb{Z}_4$ - additive codes are the quaternary linear codes over \mathbb{Z}_4 .

Another important ring of four elements is the ring $\mathbb{Z}_2 + u\mathbb{Z}_2 = R = \{0, 1, u, u+1\}$ where $u^2 = 0$.

Another important ring of four elements is the ring $\mathbb{Z}_2 + u\mathbb{Z}_2 = R = \{0, 1, u, u + 1\}$ where $u^2 = 0$. It has been shown that linear and cyclic codes over this ring have advantages compared to the ring \mathbb{Z}_4 .

The ring
$$\mathbb{Z}_2 + u\mathbb{Z}_2$$

Another important ring of four elements is the ring $\mathbb{Z}_2 + u\mathbb{Z}_2 = R = \{0, 1, u, u + 1\}$ where $u^2 = 0$. It has been shown that linear and cyclic codes over this ring have advantages compared to the ring \mathbb{Z}_4 . Some of theses advantages are: • The finite field *GF*(2) is a subring of the ring *R*. So factorization over *GF*(2) is still valid over the ring *R*.

- The finite field *GF*(2) is a subring of the ring *R*. So factorization over *GF*(2) is still valid over the ring *R*.
- The Gray image of any linear codes over *R* is always a binary linear codes (That is not always the case for \mathbb{Z}_4).

- The finite field *GF*(2) is a subring of the ring *R*. So factorization over *GF*(2) is still valid over the ring *R*.
- The Gray image of any linear codes over *R* is always a binary linear codes (That is not always the case for \mathbb{Z}_4).
- Decoding algorithm of cyclic codes over R is easier than over \mathbb{Z}_4).

What Did We Do?

 In this work, we are interested in studying linear codes over Z₂ (Z₂ + uZ₂) which are *R*-submodules of Z^α₂ R^β.

What Did We Do?

- In this work, we are interested in studying linear codes over Z₂ (Z₂ + uZ₂) which are *R*-submodules of Z^α₂ R^β.
- We also investigate structure of self-dual codes over these submodules.

 The structure of such a submodule is a little bit different than the structure of Z₂Z₄ in the sense that for any element a ∈ Z₄ the standard multiplication aZ₂ is well defined to be an element in Z₂.

- The structure of such a submodule is a little bit different than the structure of Z₂Z₄ in the sense that for any element a ∈ Z₄ the standard multiplication aZ₂ is well defined to be an element in Z₂.
- But for Z₂ (Z₂ + uZ₂) that is not the case. For example if u ∈ Z₂ + uZ₂, the standard multiplication u · 1 = u ∉ Z₂.

- The structure of such a submodule is a little bit different than the structure of Z₂Z₄ in the sense that for any element a ∈ Z₄ the standard multiplication aZ₂ is well defined to be an element in Z₂.
- But for $\mathbb{Z}_2(\mathbb{Z}_2 + u\mathbb{Z}_2)$ that is not the case. For example if $u \in \mathbb{Z}_2 + u\mathbb{Z}_2$, the standard multiplication $u \cdot 1 = u \notin \mathbb{Z}_2$.
- Hence, in studying linear codes over Z₂ (Z₂ + uZ₂) our first step was to introduce a well-defined multiplication of uZ₂ ∈ Z₂. Then based on this multiplication, we will define linear codes over Z₂ (Z₂ + uZ₂).

Well-defined Multiplication Over $\mathbb{Z}_2 R$

Let $n = \alpha + 2\beta$ where α , β are positive integers. Consider the finite field $\mathbb{Z}_2 = \{0, 1\}$ and the finite ring $R = \{0, 1, u, u + 1\}$ where $u^2 = 0$. It is known that the ring \mathbb{Z}_2 is a subring of the ring R. We define the set

Well-defined Multiplication Over $\mathbb{Z}_2 R$

Let $n = \alpha + 2\beta$ where α , β are positive integers. Consider the finite field $\mathbb{Z}_2 = \{0, 1\}$ and the finite ring $R = \{0, 1, u, u + 1\}$ where $u^2 = 0$. It is known that the ring \mathbb{Z}_2 is a subring of the ring R. We define the set

$$\mathbb{Z}_2 R = \{(e_1, e_2) \mid e_1 \in \mathbb{Z}_2 \text{ and } e_2 \in R\}.$$

Further define the mapping

$$\eta: R \to \mathbb{Z}_2$$
$$\eta (r + uq) = r.$$

i.e.,
$$\eta(0) = 0$$
, $\eta(1) = 1$, $\eta(u) = 0$ and $\eta(u+1) = 1$.

Further define the mapping

$$\eta: R \to \mathbb{Z}_2$$
$$\eta(r+uq) = r.$$

i.e., $\eta(0) = 0$, $\eta(1) = 1$, $\eta(u) = 0$ and $\eta(u+1) = 1$. It is clear that the mapping η is a ring homomorphism. Now for any element $d \in R$, define the following *R*-scalar multiplication on \mathbb{Z}_2R as

Further define the mapping

$$\eta: R \to \mathbb{Z}_2$$
$$\eta(r+uq) = r.$$

i.e., $\eta(0) = 0$, $\eta(1) = 1$, $\eta(u) = 0$ and $\eta(u+1) = 1$. It is clear that the mapping η is a ring homomorphism. Now for any element $d \in R$, define the following *R*-scalar multiplication on \mathbb{Z}_2R as

$$d(e_1,e_2)=(\eta(d)e_1,de_2).$$

Definition

This is a well-defined scalar multiplication. In fact this multiplication can be extended over $\mathbb{Z}_2^{\alpha} \times R^{\beta}$ in the following way: for any $d \in R$ and $v = (a_0, a_1, ..., a_{\alpha-1}, b_0, b_1, ..., b_{\beta-1}) \in \mathbb{Z}_2^{\alpha} \times R^{\beta}$

Definition

This is a well-defined scalar multiplication. In fact this multiplication can be extended over $\mathbb{Z}_2^{\alpha} \times R^{\beta}$ in the following way: for any $d \in R$ and $v = (a_0, a_1, ..., a_{\alpha-1}, b_0, b_1, ..., b_{\beta-1}) \in \mathbb{Z}_2^{\alpha} \times R^{\beta}$

$$dv = (\eta(d)a_0, \eta(d)a_1, ..., \eta(d)a_{\alpha-1}, db_0, db_1, ..., db_{\beta-1}).$$

Lemma

 $\mathbb{Z}_2^{\alpha} imes R^{\beta}$ is an R-module under the above definition.

Type of a Code Gray Map and Binary Images Generator and Parity-check Matrices Dual Code Weight Enumerators

$\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes

Definition (Aydogdu et. al.)

A non-empty subset C of $\mathbb{Z}_2^{\alpha} \times R^{\beta}$ is called a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code if C is an R-submodule of $\mathbb{Z}_2^{\alpha} \times R^{\beta}$.

Type of a Code Gray Map and Binary Images Generator and Parity-check Matrices Dual Code Weight Enumerators

Differences Between $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes and $\mathbb{Z}_2\mathbb{Z}_4$ -additive Codes

In the case of Z₂Z₄-additive codes, subgroups of Z₂^α × Z₄^β are the same as Z₄-submodules of Z₂^α × Z₄^β and hence a non-empty subset C of Z₂^α × Z₄^β is called a Z₂Z₄-additive code if C is a subgroup (or Z₄-submodule) of Z₂^α × Z₄^β.

Type of a Code Gray Map and Binary Images Generator and Parity-check Matrices Dual Code Weight Enumerators

Differences Between $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes and $\mathbb{Z}_2\mathbb{Z}_4$ -additive Codes

- In the case of Z₂Z₄-additive codes, subgroups of Z^α₂ × Z^β₄ are the same as Z₄-submodules of Z^α₂ × Z^β₄ and hence a non-empty subset C of Z^α₂ × Z^β₄ is called a Z₂Z₄-additive code if C is a subgroup (or Z₄-submodule) of Z^α₂ × Z^β₄.
- On the other hand, subgroups of Z^α₂ × R^β are different than R-submodules of Z^α₂ × R^β. The subgroups of Z^α₂ × R^β are closed only under binary operation while submodules are subgroups of Z^α₂ × R^β that are also closed under multiplications by elements in the ring R.

Type of a Code Gray Map and Binary Images Generator and Parity-check Matrices Dual Code Weight Enumerators

Differences Between $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes and $\mathbb{Z}_2\mathbb{Z}_4$ -additive Codes

- In the case of Z₂Z₄-additive codes, subgroups of Z^α₂ × Z^β₄ are the same as Z₄-submodules of Z^α₂ × Z^β₄ and hence a non-empty subset C of Z^α₂ × Z^β₄ is called a Z₂Z₄-additive code if C is a subgroup (or Z₄-submodule) of Z^α₂ × Z^β₄.
- On the other hand, subgroups of Z^α₂ × R^β are different than R-submodules of Z^α₂ × R^β. The subgroups of Z^α₂ × R^β are closed only under binary operation while submodules are subgroups of Z^α₂ × R^β that are also closed under multiplications by elements in the ring R.
- This is the reason for referring to them as $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear codes and not additive codes as the case of $\mathbb{Z}_2\mathbb{Z}_4$.

Type of a Code Gray Map and Binary Images Generator and Parity-check Matrices Dual Code Weight Enumerators

- For $a \in R$, there exists unique $r_1, q_1 \in \mathbb{Z}_2$ such that $a = r_1 + uq_1$.
- We note that the ring R is isomorphic \mathbb{Z}_2^2 as an additive group.
- Hence, if C is a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code then it is isomorphic to a group of the form $\mathbb{Z}_2^{k_0} \times \mathbb{Z}_2^{2k_1} \times \mathbb{Z}_2^{k_2}$ for some positive integers k_0 and k_1 .

Introduction $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes Type of a Code Gray Map and Binary Images Generator and Parity-check Matrices Dual Code Weight Enumerators

Let \mathcal{C}^F_{β} be the submodule,

$$\begin{aligned} \mathcal{C}_{\beta}^{F} &= \{(a,b) \in \mathbb{Z}_{2}^{\alpha} \times R^{\beta} \mid b \text{ free over } R^{\beta}\} \text{ and } \dim(\mathcal{C}_{\beta}^{F}) = k_{1}. \end{aligned}$$

Let $D &= \mathcal{C} \setminus \mathcal{C}_{\beta}^{F} = \mathcal{C}_{0} \oplus \mathcal{C}_{1} \text{ such that}$
$$\begin{aligned} \mathcal{C}_{0} &= \langle \{(a,ub) \in \mathbb{Z}_{2}^{\alpha} \times R^{\beta} \mid a \neq 0\} \rangle \subseteq \mathcal{C} \setminus \mathcal{C}_{\beta}^{F} \\ \mathcal{C}_{1} &= \langle \{(a,ub) \in \mathbb{Z}_{2}^{\alpha} \times R^{\beta} \mid a = 0\} \rangle \subseteq \mathcal{C} \setminus \mathcal{C}_{\beta}^{F}. \end{aligned}$$

Now, denote the dimension of C_0 as a k_0 and denote the dimension of C_1 as a k_2 . Based on this discussion we have the following definition.

Type of a Code Gray Map and Binary Images Generator and Parity-check Matrices Dual Code Weight Enumerators

Type of $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes

Definition

If $C \subseteq \mathbb{Z}_2^{\alpha} \times R^{\beta}$ is a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code, group isomorphic to $\mathbb{Z}_2^{k_0} \times \mathbb{Z}_2^{2k_1} \times \mathbb{Z}_2^{k_2}$, then C is called a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -additive(linear) code of type $(\alpha, \beta, k_0, k_1, k_2)$ where k_0, k_1 , and k_2 are defined above.

Type of a Code Gray Map and Binary Images Generator and Parity-check Matrices Dual Code Weight Enumerators

The Gray Map

Definition

For $r_1 + uq_1 = a \in R$, $r_1, q_1 \in \mathbb{Z}_2$. Define the Gray map

$$\Phi: \mathbb{Z}_2^{\alpha} \times \mathbb{R}^{\beta} \to \mathbb{Z}_2^n$$
$$\Phi(x_0, \dots, x_{\alpha-1}, r_0 + uq_0, \dots, r_{\beta-1} + uq_{\beta-1})$$
$$= (x_0, \dots, x_{\alpha-1}, q_0, \dots, q_{\beta-1}, r_0 \oplus q_0, \dots, r_{\beta-1} \oplus q_{\beta-1})$$

where $r_i \oplus q_i = r_i + q_i \mod 2$ and $n = \alpha + 2\beta$.

Type of a Code Gray Map and Binary Images Generator and Parity-check Matrices Dual Code Weight Enumerators

- The map Φ is an isometry which transforms the Lee distance in $\mathbb{Z}_2^{\alpha} \times R^{\beta}$ to the Hamming distance in \mathbb{Z}_2^n .
- Moreover, for any Z₂Z₂[u]-linear code C, we have that Φ(C) is a binary linear code as well.
- This property is not valid for the $\mathbb{Z}_2\mathbb{Z}_4-additive$ codes. We always have

$$wt(v) = wt_H(v_1) + wt_L(v_2)$$

where $wt_H(v_1)$ is the Hamming of weight of v_1 and $wt_L(v_2)$ is the Lee weight of v_2 .

Type of a Code Gray Map and Binary Images Generator and Parity-check Matrices Dual Code Weight Enumerators

Definition

The binary image $C = \Phi(C)$ of a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code C of type $(\alpha, \beta, k_0, k_1, k_2)$ is a binary linear code of length $n = \alpha + 2\beta$ and size 2^n . It is also called a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code.

Type of a Code Gray Map and Binary Images Generator and Parity-check Matrices Dual Code Weight Enumerators

The Standard Form of Generator Matrices

The standard forms of generator and parity-check matrices of a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code \mathcal{C} were given as follows.

Theorem

Let C be a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code of type $(\alpha, \beta; k_0; k_1, k_2)$. Then the generator and the parity-check matrices of C are given in the following standard forms.

$$G = \begin{pmatrix} I_{k_0} & A_1 & 0 & 0 & uT \\ \hline 0 & S & I_{k_1} & A & B_1 + uB_2 \\ 0 & 0 & 0 & uI_{k_2} & uD \end{pmatrix}$$

Type of a Code Gray Map and Binary Images Generator and Parity-check Matrices Dual Code Weight Enumerators

The Standard Form of Parity-check Matrices

Theorem

$$H = \begin{pmatrix} -A_1^t & I_{\alpha-k_0} \\ -T^t & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -uS^t & 0 & 0 \\ -(B_1+uB_2)^t + D^tA^t & -D^t & I_{\beta-k_1-k_2} \\ -uA^t & uI_{k_2} & 0 \end{pmatrix}$$

where A, A_1 , B_1 , B_2 , D, S and T are matrices over \mathbb{Z}_2 .

Type of a Code Gray Map and Binary Images Generator and Parity-check Matrices Dual Code Weight Enumerators

Inner Product

For any elements

$$v = (a_0, \ldots, a_{\alpha-1}, b_0, \ldots, b_{\beta-1}),$$

 $w = (d_0, \ldots, d_{\alpha-1}, e_0, \ldots, e_{\beta-1}) \in \mathbb{Z}_2^{\alpha} \times \mathbb{R}^{\beta},$

define the inner product

$$\langle v, w \rangle = \left(u \sum_{i=0}^{\alpha-1} a_i d_i + \sum_{j=0}^{\beta-1} b_j e_j \right) \in \mathbb{Z}_2 + u \mathbb{Z}_2$$

Type of a Code Gray Map and Binary Images Generator and Parity-check Matrices **Dual Code** Weight Enumerators

The Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Code \mathcal{C}^{\perp}

Definition

Let C be any $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code. Define the dual of C to be the code $\mathcal{C}^{\perp} = \left\{ w \in \mathbb{Z}_2^{\alpha} \times R^{\beta} | \langle v, w \rangle = 0 \ \forall v \in C \right\}.$

Type of a Code Gray Map and Binary Images Generator and Parity-check Matrices **Dual Code** Weight Enumerators

The Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Code \mathcal{C}^{\perp}

Definition

Let C be any $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code. Define the dual of C to be the code $\mathcal{C}^{\perp} = \left\{ w \in \mathbb{Z}_2^{\alpha} \times R^{\beta} | \langle v, w \rangle = 0 \ \forall v \in \mathcal{C} \right\}.$

Corollary

If C is a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code of type $(\alpha, \beta; k_0; k_1, k_2)$ then dual code C^{\perp} is of type $(\alpha, \beta; \alpha - k_0; \beta - k_1 - k_2, k_2)$.

Type of a Code Gray Map and Binary Images Generator and Parity-check Matrices Dual Code Weight Enumerators

Weight Enumerators

Let C be a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code of type $(\alpha, \beta; k_0; k_1, k_2)$ with $n = \alpha + 2\beta$. Then weight enumerator of C is defined as

$$W_{\mathcal{C}}(x,y) = \sum_{c \in \mathcal{C}} x^{n-w(c)} y^{w(c)}.$$

Type of a Code Gray Map and Binary Images Generator and Parity-check Matrices Dual Code Weight Enumerators

Theorem

Let C be a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code. The relation between the weight enumerators of C and its dual is:

$$W_{\mathcal{C}^{\perp}}(x,y) = rac{1}{|\mathcal{C}|} W_{\mathcal{C}}(x+y,x-y).$$

Separable $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes Type 0, Type I and Type II Codes Examples of Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes

The Structure of Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes

Lemma

If C is a self-dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code then C is of type $(2k_0, 2k_1 + k_2; k_0; k_1, k_2)$.

Separable $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes Type 0, Type I and Type II Codes Examples of Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes

The Structure of Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes

Lemma

If C is a self-dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code then C is of type $(2k_0, 2k_1 + k_2; k_0; k_1, k_2)$.

Proof.

Since C is a self-dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code, $C = C^{\perp}$. So, types of the C and its dual have to be equal. Hence,

$$(\alpha, \beta; k_0; k_1, k_2) = (\alpha, \beta; \alpha - k_0; \beta - k_1 - k_2, k_2)$$

and we have $\alpha = 2k_0$ and $\beta = 2k_1 + k_2$.

Separable $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes Type 0, Type I and Type II Codes Examples of Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes

Corollary

If C is a self-dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code of type $(\alpha, \beta; k_0; k_1, k_2)$ and length n, then both α and n are even.

Separable $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes Type 0, Type I and Type II Codes Examples of Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes

Corollary

If C is a self-dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code of type $(\alpha, \beta; k_0; k_1, k_2)$ and length n, then both α and n are even.

Corollary

Let k^t denote the tuple (k, k, ..., k) of length t. If C is self-dual then $(0^{\alpha}, u^{\beta})$ is clearly a codeword in C.

Separable $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes Type 0, Type I and Type II Codes Examples of Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes

Lemma

Let C be a self-dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code. Let C_{α} be the punctured code of C by deleting the coordinates outside α . Denote the binary subcode of C by (C_b) which actually contains all order two codewords and denote the dimension of $(C_b)_{\alpha}$ by k_0 . Then $(C_b)_{\alpha}$ is a binary self-dual code.

Separable $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes Type 0, Type I and Type II Codes Examples of Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes

Lemma

Let C be a self-dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code. Let C_{α} be the punctured code of C by deleting the coordinates outside α . Denote the binary subcode of C by (C_b) which actually contains all order two codewords and denote the dimension of $(C_b)_{\alpha}$ by k_0 . Then $(C_b)_{\alpha}$ is a binary self-dual code.

Proof.

Since C is self-dual then is of type $(2k_0, 2k_1 + k_2; k_0; k_1, k_2)$. For any pair of codewords $(x, y), (x', y') \in C_b$ we have y and y' are orthogonal vectors. So, x and x' are also orthogonal to each other. Moreover, $(C_b)_{\alpha}$ has dimension k_0 and is of length $2k_0$. Hence we have $(C_b)_{\alpha}$ is self-dual.

Separable $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes Type 0, Type I and Type II Codes Examples of Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes

Separable $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes

Definition

Let C be $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code. Let C_{α} (respectively C_{β}) be the punctured code of C by deleting the coordinates outside α (respectively β). If $C = C_{\alpha} \times C_{\beta}$ then C is called separable.

If C is a separable $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code of $(\alpha, \beta; k_0; k_1, k_2)$ then it has the following generator matrix.

$$G = \begin{pmatrix} I_{k_0} & A_1 & 0 & 0 & 0\\ 0 & 0 & I_{k_1} & A & B_1 + uB_2\\ 0 & 0 & 0 & uI_{k_2} & uD \end{pmatrix}$$

 $\begin{array}{l} \mbox{Separable $\mathbb{Z}_2\mathbb{Z}_2[u]$-linear Codes}\\ \mbox{Type 0, Type I and Type II Codes}\\ \mbox{Examples of Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$-linear Codes} \end{array}$

Theorem

Let C be a self-dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code of type $(2k_0, 2k_1 + k_2; k_0; k_1, k_2)$. Then the following statements are equivalent.

Separable $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes Type 0, Type I and Type II Codes Examples of Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes

Theorem

Let C be a self-dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code of type $(2k_0, 2k_1 + k_2; k_0; k_1, k_2)$. Then the following statements are equivalent.

- C_{α} is a binary self-dual code.
- C_{β} is a self-dual code over R.
- $|\mathcal{C}_{\alpha}| = 2^{k_0}$ and $|\mathcal{C}_{\beta}| = 2^{2k_1 + k_2}$.
- C is separable.

 $\begin{array}{l} \textbf{Separable $\mathbb{Z}_2\mathbb{Z}_2[u]$-linear Codes} \\ \textbf{Type 0, Type I and Type II Codes} \\ \textbf{Examples of Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$-linear Codes} \end{array}$

Theorem

If C is a binary self-dual code of length α and D is a self-dual code over R of length β . Then $C \times D$ is a self-dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code of length $\alpha + \beta$.

Separable $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes Type 0, Type I and Type II Codes Examples of Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes

Theorem

If C is a binary self-dual code of length α and D is a self-dual code over R of length β . Then $C \times D$ is a self-dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code of length $\alpha + \beta$.

Proof.

Let $v = (v_0, v_1, \ldots, v_{\alpha-1}), v' = (v'_0, v'_1, \ldots, v'_{\alpha-1}) \in \mathcal{C}$ and $w = (w_0, w_1, \ldots, w_{\beta-1}), w' = (w'_0, w'_1, \ldots, w'_{\alpha-1}) \in \mathcal{D}$. Since both of \mathcal{C} and \mathcal{D} are self-dual,

$$\langle (v,w), (v',w') \rangle = u \sum_{i=0}^{\alpha-1} v_i v'_i + \sum_{i=0}^{\beta-1} w_i w'_i \equiv 0 \pmod{2}$$

Therefore, $\mathcal{C} \times \mathcal{D}$ is self-orthogonal.

Separable $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes Type 0, Type I and Type II Codes Examples of Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes

Lemma

Let C and D are self-dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear codes of type $(\alpha, \beta; k_0; k_1, k_2)$ and $(\alpha', \beta'; k'_0; k'_1, k'_2)$ respectively. Then $C \times D$ is a self-dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code of type $(\alpha + \alpha', \beta + \beta'; k_0 + k'_0; k_1 + k'_1, k_2 + k'_2)$.

Separable $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes Type 0, Type I and Type II Codes Examples of Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes

Lemma

Let C and D are self-dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear codes of type $(\alpha, \beta; k_0; k_1, k_2)$ and $(\alpha', \beta'; k'_0; k'_1, k'_2)$ respectively. Then $C \times D$ is a self-dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code of type $(\alpha + \alpha', \beta + \beta'; k_0 + k'_0; k_1 + k'_1, k_2 + k'_2)$.

Corollary

There exists self-dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear codes of type $(\alpha, \beta; k_0; k_1, k_2)$ for all even α and all β .

 $\begin{array}{l} \mbox{Separable $\mathbb{Z}_2\mathbb{Z}_2[u]$-linear Codes}\\ \mbox{Type 0, Type I and Type II Codes}\\ \mbox{Examples of Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$-linear Codes}\\ \end{array}$

Type 0, Type I and Type II $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes

Definition

Let C be a self-dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code.

Joint work with Abidin KAYA Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes

 $\begin{array}{l} \mbox{Separable $\mathbb{Z}_2\mathbb{Z}_2[u]$-linear Codes}\\ \mbox{Type 0, Type I and Type II Codes}\\ \mbox{Examples of Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$-linear Codes}\\ \end{array}$

Type 0, Type I and Type II $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes

Definition

- Let C be a self-dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code.
 - If codewords of ${\mathcal C}$ have an odd weights then ${\mathcal C}$ is called Type 0.
 - $\bullet\,$ If ${\mathcal C}$ has only even weights then it is said to be Type I.
 - If all codewords of C have the doubly-even weight then it is said to be Type II.

Separable $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes Type 0, Type I and Type II Codes Examples of Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes

Definition

Let C be a binary code and $c \in C$. C is called antipodal if $c+1 \in C$. In the case, where C is a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code, we say C is antipodal if $\Phi(C)$ is antipodal.

It is clear that a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code C is antipodal if and only if $(1^{\alpha}, u^{\beta}) \in C$.

 $\begin{array}{l} \mbox{Separable $\mathbb{Z}_2\mathbb{Z}_2[u]$-linear Codes}\\ \mbox{Type 0, Type I and Type II Codes}\\ \mbox{Examples of Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$-linear Codes} \end{array}$

Theorem

Let $C \subseteq \mathbb{Z}_2^{\alpha} \times \mathbb{R}^{\beta}$ be a self-dual code. C is antipodal if and only if C is of Type I or Type II.

Proof.

We know that C is antipodal if and only if $(1^{\alpha}, u^{\beta}) \in C$ and also it is obvious that $(0^{\alpha}, u^{\beta}) \in C$. Therefore we have, C is antipodal if and only if $(1^{\alpha}, 0^{\beta}) \in C$. This means that all codewords of C_{α} have even weight.

Separable $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes Type 0, Type I and Type II Codes Examples of Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear Codes

Theorem

Let C be a self-dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code. If C is separable then C is antipodal.

 $\begin{array}{l} \mbox{Separable $\mathbb{Z}_2\mathbb{Z}_2[u]$-linear Codes}\\ \mbox{Type 0, Type I and Type II Codes}\\ \mbox{Examples of Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$-linear Codes}\\ \end{array}$

Theorem

Let C be a self-dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code. If C is separable then C is antipodal.

Proof.

Assume that $C = C_{\alpha} \times C_{\beta}$ is separable where C_{α} and C_{β} are self-dual codes over \mathbb{Z}_2^{α} and R^{β} respectively. Hence C_{α} contains all-1 vector and C_{β} contains all-u vector then $(1^{\alpha}, u^{\beta}) \in C$.

 $\begin{array}{l} \mbox{Separable $\mathbb{Z}_2\mathbb{Z}_2[u]$-linear Codes}\\ \mbox{Type 0, Type I and Type II Codes}\\ \mbox{Examples of Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$-linear Codes}\\ \end{array}$

Theorem

Let C be a self-dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code. If C is separable then C is antipodal.

Proof.

Assume that $C = C_{\alpha} \times C_{\beta}$ is separable where C_{α} and C_{β} are self-dual codes over \mathbb{Z}_{2}^{α} and R^{β} respectively. Hence C_{α} contains all-1 vector and C_{β} contains all-*u* vector then $(1^{\alpha}, u^{\beta}) \in C$.

Corollary

If C is a self-dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code of Type 0, then C is non-separable and non-antipodal.

 $\begin{array}{l} \mbox{Separable $\mathbb{Z}_2\mathbb{Z}_2[u]$-linear Codes}\\ \mbox{Type 0, Type I and Type II Codes}\\ \mbox{Examples of Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$-linear Codes} \end{array}$

Example

Let

$$\begin{aligned} \mathcal{C}_0 = \{(0,0,0,0), (1,1,0,u), (0,1,1,1), (1,0,1,1+u), (0,0,u,u), \\ (1,1,u,0), (0,1,1+u,1+u), (1,0,1+u,1)\} \end{aligned}$$

be a $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code of type (2,2;1;1,0). Then \mathcal{C}_0 is self-dual Type 0 code.

 $\begin{array}{l} \mbox{Separable $\mathbb{Z}_2\mathbb{Z}_2[u]$-linear Codes}\\ \mbox{Type 0, Type I and Type II Codes}\\ \mbox{Examples of Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$-linear Codes} \end{array}$

Separable Type I

Example

Let C_1 be a self-dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code of type (2,3;1;1,1) with the generator matrix of the following form.

$$G_1 = \left(egin{array}{c|c} 1 & 1 & 0 & 0 & 0 \ \hline 0 & 0 & 1 & 0 & 1 \ 0 & 0 & 0 & u & 0 \ \end{array}
ight)$$

Therefore, C_1 is a Type I separable code and its image $\Phi(C_1)$ is [8,3,2]-binary code.

 $\begin{array}{l} \mbox{Separable $\mathbb{Z}_2\mathbb{Z}_2[u]$-linear Codes}\\ \mbox{Type 0, Type I and Type II Codes}\\ \mbox{Examples of Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$-linear Codes} \end{array}$

Non-separable Type I

Example

A $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code \mathcal{D}_1 of type (4,5;2;2,1) with the generator matrix,

$$G = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & u & u \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & u & u \\ \hline 0 & 0 & 1 & 1 & 1 & 0 & 0 & u & 1+u \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1+u & u \\ 0 & 0 & 0 & 0 & 0 & 0 & u & 0 & 0 \end{pmatrix}$$

is a self-dual non-separable Type I code.

 $\begin{array}{l} \mbox{Separable $\mathbb{Z}_2\mathbb{Z}_2[u]$-linear Codes}\\ \mbox{Type 0, Type I and Type II Codes}\\ \mbox{Examples of Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$-linear Codes} \end{array}$

Separable Type II

Example

Let $C_2 \subseteq \mathbb{Z}_2^8 \times R^4$ be a self-dual code with generator matrix G_2 .

	/ 1	0	1	0	1	0	1	0	0	0	0	0)
	0	1	1	0	0	1	1	0	0	0	0	0	
	0	0	1	1	0	0	1	1	0	0	0	0	
$G_2 =$	0	0	0	1	1	1	1	0	0	0	0	0	
	0	0	0	0	0	0	0	0	1	1	1	1	İ
	0	0	0	0	0	0	0	0	0	и	0	и	
	$\setminus 0$	0	0	0	0	0	0	0	0	0	и	и	

Therefore, C_2 is a separable Type II code. Note that, in the above generator matrix, C_{α} is the binary extended Hamming code of length 8.

 $\begin{array}{l} \mbox{Separable $\mathbb{Z}_2\mathbb{Z}_2[u]$-linear Codes}\\ \mbox{Type 0, Type I and Type II Codes}\\ \mbox{Examples of Self-Dual $\mathbb{Z}_2\mathbb{Z}_2[u]$-linear Codes} \end{array}$

Non-separable Type II

Example

 \mathcal{D}_2 is a non-separable Type II self-dual $\mathbb{Z}_2\mathbb{Z}_2[u]$ -linear code with below generator matrix.

1	0	0	0	1	0	0	0	0	0	0	и	
0	1	0	0	0	1	0	0	0	0	0	и	
0	0	1	0	0	0	1	0	0	0	0	и	
0	0	0	1	0	0	0	1	0	0	0	и	
0	0	0	0	1	1	1	1	1	1	1	1 + u	
0	0	0	0	0	0	0	0	0	и	0	и	
0	0	0	0	0	0	0	0	0	0	и	и)
	1 0 0 0 0 0 0	$ \begin{array}{cccc} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ \hline 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array} $	$\begin{array}{ccccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$								

- I. Aydogdu, T. Abualrub and I. Siap On Z₂Z₂[u]−additive codes, International Journal of Computer Mathematics, doi:10.1080/00207160.2013.859854, (2014).
- S. T. Dougherty, J. Borges and Cristina Fernandez-Cordoba, Self-Dual codes over Z₂ × Z₄, AMC, Vol. 6, Number 4, 287-303, (2012).
- S. T. Dougherty, P. Gaborit, M. Harada, and P. Sole, *Type II codes over* $F_2 + uF_2$, IEEE Trans. Inform. Theory 45(1999), no.1, 32-45.
- T. Abualrub and I. Siap, *Cyclic codes over the rings* $\mathbb{Z}_2 + u\mathbb{Z}_2$ and $\mathbb{Z}_2 + u\mathbb{Z}_2 + u^2\mathbb{Z}_2$, Designs Codes and Cryptography. Vol.**42**, No.3, 273-287(2007).

- Abualrub, T., Siap, I. and Aydin, N., "ℤ₂ℤ₄-additive cyclic codes", IEEE Trans. Info. Theory, vol. 60, No. 3, pp. 1508-1514, Mar. 2014.
- Aydogdu, I. and Siap, I., "The Structure of Z₂Z₂^s−Additive Codes: Bounds on the minimum distance", Applied Mathematics and Information Sciences(AMIS),7, (6), 2271-2278 2013.
- Bonnecaze, A. and Udaya, P., "Cyclic codes and self-dual codes over 𝔽₂ + 𝑢𝔽₂", IEEE Trans. Inform. Theory. Vol.45, No.4, 1250-1255(1999).
- Borges, J., Fernández-Córdoba, C., Pujol, J., Rifà, J. and Villanueva, M., "Z₂Z₄-linear codes: Generator Matrices and Duality", Designs, Codes and Cryptography, 54, (2), 167-179, 2010.