Self-Dual $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear Codes

Ismail Aydogdu

Department of Mathematics

$\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive Codes

$\mathrm{A} \mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code \mathcal{C} is defined to be a subgroup of $\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$ where $\alpha+2 \beta=n$.

$\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive Codes

A $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code \mathcal{C} is defined to be a subgroup of $\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$ where $\alpha+2 \beta=n$.
If $\beta=0$ then $\mathbb{Z}_{2} \mathbb{Z}_{4}$ - additive codes are just binary linear codes, and if $\alpha=0$, then $\mathbb{Z}_{2} \mathbb{Z}_{4}$ - additive codes are the quaternary linear codes over \mathbb{Z}_{4}.

The ring $\mathbb{Z}_{2}+u \mathbb{Z}_{2}$

Another important ring of four elements is the ring $\mathbb{Z}_{2}+u \mathbb{Z}_{2}=R=\{0,1, u, u+1\}$ where $u^{2}=0$.

The ring $\mathbb{Z}_{2}+u \mathbb{Z}_{2}$

Another important ring of four elements is the ring $\mathbb{Z}_{2}+u \mathbb{Z}_{2}=R=\{0,1, u, u+1\}$ where $u^{2}=0$. It has been shown that linear and cyclic codes over this ring have advantages compared to the ring \mathbb{Z}_{4}.

The ring $\mathbb{Z}_{2}+u \mathbb{Z}_{2}$

Another important ring of four elements is the ring $\mathbb{Z}_{2}+u \mathbb{Z}_{2}=R=\{0,1, u, u+1\}$ where $u^{2}=0$. It has been shown that linear and cyclic codes over this ring have advantages compared to the ring \mathbb{Z}_{4}.
Some of theses advantages are:

- The finite field $G F(2)$ is a subring of the ring R. So factorization over $G F(2)$ is still valid over the ring R.
- The finite field $G F(2)$ is a subring of the ring R. So factorization over $G F(2)$ is still valid over the ring R.
- The Gray image of any linear codes over R is always a binary linear codes (That is not always the case for \mathbb{Z}_{4}).
- The finite field $G F(2)$ is a subring of the ring R. So factorization over $G F(2)$ is still valid over the ring R.
- The Gray image of any linear codes over R is always a binary linear codes (That is not always the case for \mathbb{Z}_{4}).
- Decoding algorithm of cyclic codes over R is easier than over \mathbb{Z}_{4}).

What Did We Do?

- In this work, we are interested in studying linear codes over $\mathbb{Z}_{2}\left(\mathbb{Z}_{2}+u \mathbb{Z}_{2}\right)$ which are R-submodules of $\mathbb{Z}_{2}^{\alpha} R^{\beta}$.

What Did We Do?

- In this work, we are interested in studying linear codes over $\mathbb{Z}_{2}\left(\mathbb{Z}_{2}+u \mathbb{Z}_{2}\right)$ which are R-submodules of $\mathbb{Z}_{2}^{\alpha} R^{\beta}$.
- We also investigate structure of self-dual codes over these submodules.
- The structure of such a submodule is a little bit different than the structure of $\mathbb{Z}_{2} \mathbb{Z}_{4}$ in the sense that for any element $a \in \mathbb{Z}_{4}$ the standard multiplication $a \mathbb{Z}_{2}$ is well defined to be an element in \mathbb{Z}_{2}.
- The structure of such a submodule is a little bit different than the structure of $\mathbb{Z}_{2} \mathbb{Z}_{4}$ in the sense that for any element $a \in \mathbb{Z}_{4}$ the standard multiplication $a \mathbb{Z}_{2}$ is well defined to be an element in \mathbb{Z}_{2}.
- But for $\mathbb{Z}_{2}\left(\mathbb{Z}_{2}+u \mathbb{Z}_{2}\right)$ that is not the case. For example if $u \in \mathbb{Z}_{2}+u \mathbb{Z}_{2}$, the standard multiplication $u \cdot 1=u \notin \mathbb{Z}_{2}$.
- The structure of such a submodule is a little bit different than the structure of $\mathbb{Z}_{2} \mathbb{Z}_{4}$ in the sense that for any element $a \in \mathbb{Z}_{4}$ the standard multiplication $a \mathbb{Z}_{2}$ is well defined to be an element in \mathbb{Z}_{2}.
- But for $\mathbb{Z}_{2}\left(\mathbb{Z}_{2}+u \mathbb{Z}_{2}\right)$ that is not the case. For example if $u \in \mathbb{Z}_{2}+u \mathbb{Z}_{2}$, the standard multiplication $u \cdot 1=u \notin \mathbb{Z}_{2}$.
- Hence, in studying linear codes over $\mathbb{Z}_{2}\left(\mathbb{Z}_{2}+u \mathbb{Z}_{2}\right)$ our first step was to introduce a well-defined multiplication of $u \mathbb{Z}_{2} \in \mathbb{Z}_{2}$. Then based on this multiplication, we will define linear codes over $\mathbb{Z}_{2}\left(\mathbb{Z}_{2}+u \mathbb{Z}_{2}\right)$.

Well-defined Multiplication Over $\mathbb{Z}_{2} R$

Let $n=\alpha+2 \beta$ where α, β are positive integers. Consider the finite field $\mathbb{Z}_{2}=\{0,1\}$ and the finite ring $R=\{0,1, u, u+1\}$ where $u^{2}=0$.
It is known that the ring \mathbb{Z}_{2} is a subring of the ring R. We define the set

Well-defined Multiplication Over $\mathbb{Z}_{2} R$

Let $n=\alpha+2 \beta$ where α, β are positive integers. Consider the finite field $\mathbb{Z}_{2}=\{0,1\}$ and the finite ring $R=\{0,1, u, u+1\}$ where $u^{2}=0$.
It is known that the ring \mathbb{Z}_{2} is a subring of the ring R. We define the set

$$
\mathbb{Z}_{2} R=\left\{\left(e_{1}, e_{2}\right) \mid e_{1} \in \mathbb{Z}_{2} \text { and } e_{2} \in R\right\} .
$$

Further define the mapping

$$
\begin{gathered}
\eta: R \rightarrow \mathbb{Z}_{2} \\
\eta(r+u q)=r . \\
\text { i.e., } \eta(0)=0, \eta(1)=1, \eta(u)=0 \text { and } \eta(u+1)=1 .
\end{gathered}
$$

Further define the mapping

$$
\begin{array}{r}
\eta: R \rightarrow \mathbb{Z}_{2} \\
\eta(r+u q)=r .
\end{array}
$$

i.e., $\eta(0)=0, \eta(1)=1, \eta(u)=0$ and $\eta(u+1)=1$.

It is clear that the mapping η is a ring homomorphism. Now for any element $d \in R$, define the following R-scalar multiplication on $\mathbb{Z}_{2} R$ as

Further define the mapping

$$
\begin{array}{r}
\eta: R \rightarrow \mathbb{Z}_{2} \\
\eta(r+u q)=r .
\end{array}
$$

i.e., $\eta(0)=0, \eta(1)=1, \eta(u)=0$ and $\eta(u+1)=1$.

It is clear that the mapping η is a ring homomorphism. Now for any element $d \in R$, define the following R-scalar multiplication on $\mathbb{Z}_{2} R$ as

$$
d\left(e_{1}, e_{2}\right)=\left(\eta(d) e_{1}, d e_{2}\right)
$$

Definition

This is a well-defined scalar multiplication. In fact this multiplication can be extended over $\mathbb{Z}_{2}^{\alpha} \times R^{\beta}$ in the following way: for any $d \in R$ and $v=\left(a_{0}, a_{1}, \ldots, a_{\alpha-1}, b_{0}, b_{1}, \ldots, b_{\beta-1}\right) \in \mathbb{Z}_{2}^{\alpha} \times R^{\beta}$

Definition

This is a well-defined scalar multiplication. In fact this multiplication can be extended over $\mathbb{Z}_{2}^{\alpha} \times R^{\beta}$ in the following way: for any $d \in R$ and $v=\left(a_{0}, a_{1}, \ldots, a_{\alpha-1}, b_{0}, b_{1}, \ldots, b_{\beta-1}\right) \in \mathbb{Z}_{2}^{\alpha} \times R^{\beta}$

$$
d v=\left(\eta(d) a_{0}, \eta(d) a_{1}, \ldots, \eta(d) a_{\alpha-1}, d b_{0}, d b_{1}, \ldots, d b_{\beta-1}\right) .
$$

Lemma

$\mathbb{Z}_{2}^{\alpha} \times R^{\beta}$ is an R-module under the above definition.

$\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear Codes

Definition (Aydogdu et. al.)

A non-empty subset \mathcal{C} of $\mathbb{Z}_{2}^{\alpha} \times R^{\beta}$ is called a $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code if \mathcal{C} is an R-submodule of $\mathbb{Z}_{2}^{\alpha} \times R^{\beta}$.

Differences Between $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear Codes and $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive Codes

- In the case of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes, subgroups of $\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$ are the same as \mathbb{Z}_{4}-submodules of $\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$ and hence a non-empty subset \mathcal{C} of $\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$ is called a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code if \mathcal{C} is a subgroup (or \mathbb{Z}_{4}-submodule) of $\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$.

Differences Between $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear Codes and $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive Codes

- In the case of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes, subgroups of $\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$ are the same as \mathbb{Z}_{4}-submodules of $\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$ and hence a non-empty subset \mathcal{C} of $\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$ is called a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code if \mathcal{C} is a subgroup (or \mathbb{Z}_{4}-submodule) of $\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$.
- On the other hand, subgroups of $\mathbb{Z}_{2}^{\alpha} \times R^{\beta}$ are different than R-submodules of $\mathbb{Z}_{2}^{\alpha} \times R^{\beta}$. The subgroups of $\mathbb{Z}_{2}^{\alpha} \times R^{\beta}$ are closed only under binary operation while submodules are subgroups of $\mathbb{Z}_{2}^{\alpha} \times R^{\beta}$ that are also closed under multiplications by elements in the ring R.

Differences Between $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear Codes and $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive Codes

- In the case of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes, subgroups of $\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$ are the same as \mathbb{Z}_{4}-submodules of $\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$ and hence a non-empty subset \mathcal{C} of $\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$ is called a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code if \mathcal{C} is a subgroup (or \mathbb{Z}_{4}-submodule) of $\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$.
- On the other hand, subgroups of $\mathbb{Z}_{2}^{\alpha} \times R^{\beta}$ are different than R-submodules of $\mathbb{Z}_{2}^{\alpha} \times R^{\beta}$. The subgroups of $\mathbb{Z}_{2}^{\alpha} \times R^{\beta}$ are closed only under binary operation while submodules are subgroups of $\mathbb{Z}_{2}^{\alpha} \times R^{\beta}$ that are also closed under multiplications by elements in the ring R.
- This is the reason for referring to them as $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear codes and not additive codes as the case of $\mathbb{Z}_{2} \mathbb{Z}_{4}$.
- For $a \in R$, there exists unique $r_{1}, q_{1} \in \mathbb{Z}_{2}$ such that $a=r_{1}+u q_{1}$.
- We note that the ring R is isomorphic \mathbb{Z}_{2}^{2} as an additive group.
- Hence, if \mathcal{C} is a $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code then it is isomorphic to a group of the form $\mathbb{Z}_{2}^{k_{0}} \times \mathbb{Z}_{2}^{2 k_{1}} \times \mathbb{Z}_{2}^{k_{2}}$ for some positive integers k_{0} and k_{1}.

Let \mathcal{C}_{β}^{F} be the submodule,

$$
\mathcal{C}_{\beta}^{F}=\left\{(a, b) \in \mathbb{Z}_{2}^{\alpha} \times R^{\beta} \mid b \text { free over } R^{\beta}\right\} \text { and } \operatorname{dim}\left(\mathcal{C}_{\beta}^{F}\right)=k_{1}
$$

Let $D=\mathcal{C} \backslash \mathcal{C}_{\beta}^{F}=\mathcal{C}_{0} \oplus \mathcal{C}_{1}$ such that

$$
\begin{aligned}
\mathcal{C}_{0} & =\left\langle\left\{(a, u b) \in \mathbb{Z}_{2}^{\alpha} \times R^{\beta} \mid a \neq 0\right\}\right\rangle \subseteq \mathcal{C} \backslash \mathcal{C}_{\beta}^{F} \\
\mathcal{C}_{1} & =\left\langle\left\{(a, u b) \in \mathbb{Z}_{2}^{\alpha} \times R^{\beta} \mid a=0\right\}\right\rangle \subseteq \mathcal{C} \backslash \mathcal{C}_{\beta}^{F} .
\end{aligned}
$$

Now, denote the dimension of \mathcal{C}_{0} as a k_{0} and denote the dimension of \mathcal{C}_{1} as a k_{2}.
Based on this discussion we have the following definition.

Type of $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear Codes

Definition

If $\mathcal{C} \subseteq \mathbb{Z}_{2}^{\alpha} \times R^{\beta}$ is a $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code, group isomorphic to
$\mathbb{Z}_{2}^{k_{0}} \times \mathbb{Z}_{2}^{2 k_{1}} \times \mathbb{Z}_{2}^{k_{2}}$, then \mathcal{C} is called a $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-additive (linear) code of type $\left(\alpha, \beta, k_{0}, k_{1}, k_{2}\right)$ where k_{0}, k_{1}, and k_{2} are defined above.

The Gray Map

Definition

For $r_{1}+u q_{1}=a \in R, r_{1}, q_{1} \in \mathbb{Z}_{2}$. Define the Gray map

$$
\begin{gathered}
\Phi: \mathbb{Z}_{2}^{\alpha} \times R^{\beta} \rightarrow \mathbb{Z}_{2}^{n} \\
\Phi\left(x_{0}, \ldots x_{\alpha-1}, r_{0}+u q_{0}, \ldots r_{\beta-1}+u q_{\beta-1}\right) \\
=\left(x_{0}, \ldots x_{\alpha-1}, q_{0}, \ldots, q_{\beta-1}, r_{0} \oplus q_{0}, \ldots, r_{\beta-1} \oplus q_{\beta-1}\right)
\end{gathered}
$$

where $r_{i} \oplus q_{i}=r_{i}+q_{i} \bmod 2$ and $n=\alpha+2 \beta$.

- The map Φ is an isometry which transforms the Lee distance in $\mathbb{Z}_{2}^{\alpha} \times R^{\beta}$ to the Hamming distance in \mathbb{Z}_{2}^{n}.
- Moreover, for any $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code \mathcal{C}, we have that $\Phi(\mathcal{C})$ is a binary linear code as well.
- This property is not valid for the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes. We always have

$$
w t(v)=w t_{H}\left(v_{1}\right)+w t_{L}\left(v_{2}\right)
$$

where $w t_{H}\left(v_{1}\right)$ is the Hamming of weight of v_{1} and $w t_{L}\left(v_{2}\right)$ is the Lee weight of v_{2}.

Definition

The binary image $C=\Phi(\mathcal{C})$ of a $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code \mathcal{C} of type $\left(\alpha, \beta, k_{0}, k_{1}, k_{2}\right)$ is a binary linear code of length $n=\alpha+2 \beta$ and size 2^{n}. It is also called a $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code.

The Standard Form of Generator Matrices

The standard forms of generator and parity-check matrices of a $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code \mathcal{C} were given as follows.

Theorem

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code of type $\left(\alpha, \beta ; k_{0} ; k_{1}, k_{2}\right)$. Then the generator and the parity-check matrices of \mathcal{C} are given in the following standard forms.

$$
G=\left(\begin{array}{cc|ccc}
I_{k_{0}} & A_{1} & 0 & 0 & u T \\
\hline 0 & S & I_{k_{1}} & A & B_{1}+u B_{2} \\
0 & 0 & 0 & u I_{k_{2}} & u D
\end{array}\right)
$$

The Standard Form of Parity-check Matrices

Theorem

$$
H=\left(\begin{array}{cc|ccc}
-A_{1}^{t} & I_{\alpha-k_{0}} & -u S^{t} & 0 & 0 \\
-T^{t} & 0 & -\left(B_{1}+u B_{2}\right)^{t}+D^{t} A^{t} & -D^{t} & I_{\beta-k_{1}-k_{2}} \\
0 & 0 & -u A^{t} & u I_{k_{2}} & 0
\end{array}\right)
$$

where $A, A_{1}, B_{1}, B_{2}, D, S$ and T are matrices over \mathbb{Z}_{2}.

Inner Product

For any elements

$$
\begin{array}{r}
v=\left(a_{0}, \ldots, a_{\alpha-1}, b_{0}, \ldots, b_{\beta-1}\right) \\
w=\left(d_{0}, \ldots, d_{\alpha-1}, e_{0}, \ldots, e_{\beta-1}\right) \in \mathbb{Z}_{2}^{\alpha} \times R^{\beta}
\end{array}
$$

define the inner product

$$
\langle v, w\rangle=\left(u \sum_{i=0}^{\alpha-1} a_{i} d_{i}+\sum_{j=0}^{\beta-1} b_{j} e_{j}\right) \in \mathbb{Z}_{2}+u \mathbb{Z}_{2}
$$

The Dual $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear Code \mathcal{C}^{\perp}

Definition

Let \mathcal{C} be any $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code. Define the dual of \mathcal{C} to be the code

$$
\mathcal{C}^{\perp}=\left\{w \in \mathbb{Z}_{2}^{\alpha} \times R^{\beta} \mid\langle v, w\rangle=0 \forall v \in \mathcal{C}\right\} .
$$

The Dual $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear Code \mathcal{C}^{\perp}

Definition

Let \mathcal{C} be any $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code. Define the dual of \mathcal{C} to be the code

$$
\mathcal{C}^{\perp}=\left\{w \in \mathbb{Z}_{2}^{\alpha} \times R^{\beta} \mid\langle v, w\rangle=0 \forall v \in \mathcal{C}\right\} .
$$

Corollary

If \mathcal{C} is a $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code of type $\left(\alpha, \beta ; k_{0} ; k_{1}, k_{2}\right)$ then dual code \mathcal{C}^{\perp} is of type $\left(\alpha, \beta ; \alpha-k_{0} ; \beta-k_{1}-k_{2}, k_{2}\right)$.

Weight Enumerators

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code of type $\left(\alpha, \beta ; k_{0} ; k_{1}, k_{2}\right)$ with $n=\alpha+2 \beta$. Then weight enumerator of \mathcal{C} is defined as

$$
W_{\mathcal{C}}(x, y)=\sum_{c \in \mathcal{C}} x^{n-w(c)} y^{w(c)}
$$

Theorem

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code. The relation between the weight enumerators of \mathcal{C} and its dual is:

$$
W_{\mathcal{C}^{\perp}}(x, y)=\frac{1}{|\mathcal{C}|} W_{\mathcal{C}}(x+y, x-y) .
$$

The Structure of Self-Dual $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear Codes

Lemma

If \mathcal{C} is a self-dual $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code then \mathcal{C} is of type $\left(2 k_{0}, 2 k_{1}+k_{2} ; k_{0} ; k_{1}, k_{2}\right)$.

The Structure of Self-Dual $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear Codes

Lemma

If \mathcal{C} is a self-dual $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code then \mathcal{C} is of type $\left(2 k_{0}, 2 k_{1}+k_{2} ; k_{0} ; k_{1}, k_{2}\right)$.

Proof.

Since \mathcal{C} is a self-dual $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code, $\mathcal{C}=\mathcal{C}^{\perp}$. So, types of the \mathcal{C} and its dual have to be equal. Hence,

$$
\left(\alpha, \beta ; k_{0} ; k_{1}, k_{2}\right)=\left(\alpha, \beta ; \alpha-k_{0} ; \beta-k_{1}-k_{2}, k_{2}\right)
$$

and we have $\alpha=2 k_{0}$ and $\beta=2 k_{1}+k_{2}$.

Corollary

If \mathcal{C} is a self-dual $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code of type $\left(\alpha, \beta ; k_{0} ; k_{1}, k_{2}\right)$ and length n, then both α and n are even.

Corollary

If \mathcal{C} is a self-dual $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code of type $\left(\alpha, \beta ; k_{0} ; k_{1}, k_{2}\right)$ and length n, then both α and n are even.

Corollary

Let k^{t} denote the tuple (k, k, \ldots, k) of length t. If \mathcal{C} is self-dual then $\left(0^{\alpha}, u^{\beta}\right)$ is clearly a codeword in \mathcal{C}.

Lemma

Let \mathcal{C} be a self-dual $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code. Let \mathcal{C}_{α} be the punctured code of \mathcal{C} by deleting the coordinates outside α. Denote the binary subcode of \mathcal{C} by $\left(\mathcal{C}_{b}\right)$ which actually contains all order two codewords and denote the dimension of $\left(\mathcal{C}_{b}\right)_{\alpha}$ by k_{0}. Then $\left(\mathcal{C}_{b}\right)_{\alpha}$ is a binary self-dual code.

Lemma

Let \mathcal{C} be a self-dual $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code. Let \mathcal{C}_{α} be the punctured code of \mathcal{C} by deleting the coordinates outside α. Denote the binary subcode of \mathcal{C} by $\left(\mathcal{C}_{b}\right)$ which actually contains all order two codewords and denote the dimension of $\left(\mathcal{C}_{b}\right)_{\alpha}$ by k_{0}. Then $\left(\mathcal{C}_{b}\right)_{\alpha}$ is a binary self-dual code.

Proof.

Since \mathcal{C} is self-dual then is of type $\left(2 k_{0}, 2 k_{1}+k_{2} ; k_{0} ; k_{1}, k_{2}\right)$. For any pair of codewords $(x, y),\left(x^{\prime}, y^{\prime}\right) \in \mathcal{C}_{b}$ we have y and y^{\prime} are orthogonal vectors. So, x and x^{\prime} are also orthogonal to each other. Moreover, $\left(\mathcal{C}_{b}\right)_{\alpha}$ has dimension k_{0} and is of length $2 k_{0}$. Hence we have $\left(\mathcal{C}_{b}\right)_{\alpha}$ is self-dual.

Separable $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear Codes

Definition

Let \mathcal{C} be $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code. Let \mathcal{C}_{α} (respectively \mathcal{C}_{β}) be the punctured code of \mathcal{C} by deleting the coordinates outside α (respectively β). If $\mathcal{C}=\mathcal{C}_{\alpha} \times \mathcal{C}_{\beta}$ then \mathcal{C} is called separable.

If \mathcal{C} is a separable $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code of $\left(\alpha, \beta ; k_{0} ; k_{1}, k_{2}\right)$ then it has the following generator matrix.

$$
G=\left(\begin{array}{cc|ccc}
I_{k_{0}} & A_{1} & 0 & 0 & 0 \\
\hline 0 & 0 & I_{k_{1}} & A & B_{1}+u B_{2} \\
0 & 0 & 0 & u I_{k_{2}} & u D
\end{array}\right)
$$

Theorem

Let \mathcal{C} be a self-dual $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code of type $\left(2 k_{0}, 2 k_{1}+k_{2} ; k_{0} ; k_{1}, k_{2}\right)$. Then the following statements are equivalent.

Theorem

Let \mathcal{C} be a self-dual $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code of type $\left(2 k_{0}, 2 k_{1}+k_{2} ; k_{0} ; k_{1}, k_{2}\right)$. Then the following statements are equivalent.

- \mathcal{C}_{α} is a binary self-dual code.
- \mathcal{C}_{β} is a self-dual code over R.
- $\left|\mathcal{C}_{\alpha}\right|=2^{k_{0}}$ and $\left|\mathcal{C}_{\beta}\right|=2^{2 k_{1}+k_{2}}$.
- \mathcal{C} is separable.

Theorem

If \mathcal{C} is a binary self-dual code of length α and \mathcal{D} is a self-dual code over R of length β. Then $\mathcal{C} \times \mathcal{D}$ is a self-dual $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code of length $\alpha+\beta$.

Theorem

If \mathcal{C} is a binary self-dual code of length α and \mathcal{D} is a self-dual code over R of length β. Then $\mathcal{C} \times \mathcal{D}$ is a self-dual $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code of length $\alpha+\beta$.

Proof.

Let $v=\left(v_{0}, v_{1}, \ldots, v_{\alpha-1}\right), v^{\prime}=\left(v_{0}^{\prime}, v_{1}^{\prime}, \ldots, v_{\alpha-1}^{\prime}\right) \in \mathcal{C}$ and $w=\left(w_{0}, w_{1}, \ldots, w_{\beta-1}\right), w^{\prime}=\left(w_{0}^{\prime}, w_{1}^{\prime}, \ldots, w_{\alpha-1}^{\prime}\right) \in \mathcal{D}$. Since both of \mathcal{C} and \mathcal{D} are self-dual,

$$
\left\langle(v, w),\left(v^{\prime}, w^{\prime}\right)\right\rangle=u \sum_{i=0}^{\alpha-1} v_{i} v_{i}^{\prime}+\sum_{i=0}^{\beta-1} w_{i} w_{i}^{\prime} \equiv 0(\bmod 2) .
$$

Therefore, $\mathcal{C} \times \mathcal{D}$ is self-orthogonal.

Lemma

Let \mathcal{C} and \mathcal{D} are self-dual $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear codes of type $\left(\alpha, \beta ; k_{0} ; k_{1}, k_{2}\right)$ and $\left(\alpha^{\prime}, \beta^{\prime} ; k_{0}^{\prime} ; k_{1}^{\prime}, k_{2}^{\prime}\right)$ respectively. Then $\mathcal{C} \times \mathcal{D}$ is a self-dual $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code of type $\left(\alpha+\alpha^{\prime}, \beta+\beta^{\prime} ; k_{0}+k_{0}^{\prime} ; k_{1}+k_{1}^{\prime}, k_{2}+k_{2}^{\prime}\right)$.

Lemma

Let \mathcal{C} and \mathcal{D} are self-dual $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear codes of type $\left(\alpha, \beta ; k_{0} ; k_{1}, k_{2}\right)$ and $\left(\alpha^{\prime}, \beta^{\prime} ; k_{0}^{\prime} ; k_{1}^{\prime}, k_{2}^{\prime}\right)$ respectively. Then $\mathcal{C} \times \mathcal{D}$ is a self-dual $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code of type $\left(\alpha+\alpha^{\prime}, \beta+\beta^{\prime} ; k_{0}+k_{0}^{\prime} ; k_{1}+k_{1}^{\prime}, k_{2}+k_{2}^{\prime}\right)$.

Corollary

There exists self-dual $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear codes of type $\left(\alpha, \beta ; k_{0} ; k_{1}, k_{2}\right)$ for all even α and all β.

Type 0 , Type I and Type II $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear Codes

Definition

Let \mathcal{C} be a self-dual $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code.

Type 0 , Type I and Type II $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear Codes

Definition

Let \mathcal{C} be a self-dual $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code.

- If codewords of \mathcal{C} have an odd weights then \mathcal{C} is called Type 0 .
- If \mathcal{C} has only even weights then it is said to be Type I.
- If all codewords of \mathcal{C} have the doubly-even weight then it is said to be Type II.

Definition

Let C be a binary code and $c \in C . C$ is called antipodal if $c+1 \in C$. In the case, where \mathcal{C} is a $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code, we say \mathcal{C} is antipodal if $\Phi(\mathcal{C})$ is antipodal.

It is clear that a $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code \mathcal{C} is antipodal if and only if $\left(1^{\alpha}, u^{\beta}\right) \in \mathcal{C}$.

Theorem

Let $\mathcal{C} \subseteq \mathbb{Z}_{2}^{\alpha} \times R^{\beta}$ be a self-dual code. \mathcal{C} is antipodal if and only if \mathcal{C} is of Type I or Type II.

Proof.

We know that \mathcal{C} is antipodal if and only if $\left(1^{\alpha}, u^{\beta}\right) \in \mathcal{C}$ and also it is obvious that $\left(0^{\alpha}, u^{\beta}\right) \in \mathcal{C}$. Therefore we have, \mathcal{C} is antipodal if and only if $\left(1^{\alpha}, 0^{\beta}\right) \in \mathcal{C}$. This means that all codewords of \mathcal{C}_{α} have even weight.

Theorem

Let \mathcal{C} be a self-dual $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code. If \mathcal{C} is separable then \mathcal{C} is antipodal.

Theorem

Let \mathcal{C} be a self-dual $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code. If \mathcal{C} is separable then \mathcal{C} is antipodal.

Proof.

Assume that $\mathcal{C}=\mathcal{C}_{\alpha} \times \mathcal{C}_{\beta}$ is separable where \mathcal{C}_{α} and \mathcal{C}_{β} are self-dual codes over \mathbb{Z}_{2}^{α} and R^{β} respectively. Hence \mathcal{C}_{α} contains all- 1 vector and \mathcal{C}_{β} contains all- u vector then $\left(1^{\alpha}, u^{\beta}\right) \in \mathcal{C}$.

Theorem

Let \mathcal{C} be a self-dual $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code. If \mathcal{C} is separable then \mathcal{C} is antipodal.

Proof.

Assume that $\mathcal{C}=\mathcal{C}_{\alpha} \times \mathcal{C}_{\beta}$ is separable where \mathcal{C}_{α} and \mathcal{C}_{β} are self-dual codes over \mathbb{Z}_{2}^{α} and R^{β} respectively. Hence \mathcal{C}_{α} contains all- 1 vector and \mathcal{C}_{β} contains all- u vector then $\left(1^{\alpha}, u^{\beta}\right) \in \mathcal{C}$.

Corollary

If \mathcal{C} is a self-dual $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code of Type 0 , then \mathcal{C} is non-separable and non-antipodal.

Type 0

Example

Let
$\mathcal{C}_{0}=\{(0,0,0,0),(1,1,0, u),(0,1,1,1),(1,0,1,1+u),(0,0, u, u)$, $(1,1, u, 0),(0,1,1+u, 1+u),(1,0,1+u, 1)\}$
be a $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code of type $(2,2 ; 1 ; 1,0)$. Then \mathcal{C}_{0} is self-dual Type 0 code.

Separable Type I

Example

Let \mathcal{C}_{1} be a self-dual $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code of type $(2,3 ; 1 ; 1,1)$ with the generator matrix of the following form.

$$
G_{1}=\left(\begin{array}{cc|ccc}
1 & 1 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & u & 0
\end{array}\right)
$$

Therefore, \mathcal{C}_{1} is a Type I separable code and its image $\Phi\left(\mathcal{C}_{1}\right)$ is [8,3,2]-binary code.

Non-separable Type I

Example

$\mathrm{A} \mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code \mathcal{D}_{1} of type $(4,5 ; 2 ; 2,1)$ with the generator matrix,

$$
G=\left(\begin{array}{cccc|ccccc}
1 & 0 & 1 & 0 & 0 & 0 & 0 & u & u \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & u & u \\
\hline 0 & 0 & 1 & 1 & 1 & 0 & 0 & u & 1+u \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 1+u & u \\
0 & 0 & 0 & 0 & 0 & 0 & u & 0 & 0
\end{array}\right)
$$

is a self-dual non-separable Type I code.

Separable Type II

Example

Let $\mathcal{C}_{2} \subseteq \mathbb{Z}_{2}^{8} \times R^{4}$ be a self-dual code with generator matrix G_{2}.

$$
G_{2}=\left(\begin{array}{llllllll|llll}
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & u & 0 & u \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & u & u
\end{array}\right)
$$

Therefore, \mathcal{C}_{2} is a separable Type II code. Note that, in the above generator matrix, \mathcal{C}_{α} is the binary extended Hamming code of length 8.

Non-separable Type II

Example

\mathcal{D}_{2} is a non-separable Type II self-dual $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$-linear code with below generator matrix.

$$
\left(\begin{array}{cccccccc|cccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & u \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & u \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & u \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & u \\
\hline 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1+u \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & u & 0 & u \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & u & u
\end{array}\right)
$$

固 I．Aydogdu，T．Abualrub and I．Siap On $\mathbb{Z}_{2} \mathbb{Z}_{2}[u]$－additive codes，International Journal of Computer Mathematics， doi：10．1080／00207160．2013．859854，（2014）．

围 S．T．Dougherty，J．Borges and Cristina Fernandez－Cordoba， Self－Dual codes over $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ ，AMC，Vol．6，Number 4， 287－303，（2012）．

R S．T．Dougherty，P．Gaborit，M．Harada，and P．Sole，Type II codes over $F_{2}+u F_{2}$ ，IEEE Trans．Inform．Theory 45（1999）， no．1，32－45．

囯 T．Abualrub and I．Siap，Cyclic codes over the rings $\mathbb{Z}_{2}+u \mathbb{Z}_{2}$ and $\mathbb{Z}_{2}+u \mathbb{Z}_{2}+u^{2} \mathbb{Z}_{2}$ ，Designs Codes and Cryptography． Vol．42，No．3，273－287（2007）．

囦 Abualrub，T．，Siap，I．and Aydin，N．，＂ $\mathbb{Z}_{2} \mathbb{Z}_{4}$－additive cyclic codes＂，IEEE Trans．Info．Theory，vol．60，No．3，pp． 1508－1514，Mar． 2014.

囯 Aydogdu，I．and Siap，I．，＂The Structure of $\mathbb{Z}_{2} \mathbb{Z}_{2^{s}}$－Additive Codes：Bounds on the minimum distance＂，Applied Mathematics and Information Sciences（AMIS），7，（6）， 2271－2278 2013.
围 Bonnecaze，A．and Udaya，P．，＂Cyclic codes and self－dual codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}$＂，IEEE Trans．Inform．Theory．Vol．45， No．4，1250－1255（1999）．

Rorges，J．，Fernández－Córdoba，C．，Pujol，J．，Rifà，J．and Villanueva，M．，＂ $\mathbb{Z}_{2} \mathbb{Z}_{4}$－linear codes：Generator Matrices and Duality＂，Designs，Codes and Cryptography，54，（2），167－179， 2010.

