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Z2Z4-additive Codes

A Z2Z4-additive code C is defined to be a subgroup of Zα
2 ×Z

β
4

where α + 2β = n.

If β = 0 then Z2Z4- additive codes are just binary linear codes,
and if α = 0, then Z2Z4- additive codes are the quaternary linear
codes over Z4.
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The ring Z2 + uZ2

Another important ring of four elements is the ring
Z2 + uZ2 = R = {0, 1, u, u + 1} where u2 = 0.

It has been shown that linear and cyclic codes over this ring have
advantages compared to the ring Z4.
Some of theses advantages are:
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The finite field GF(2) is a subring of the ring R. So
factorization over GF(2) is still valid over the ring R.

The Gray image of any linear codes over R is always a binary
linear codes (That is not always the case for Z4).

Decoding algorithm of cyclic codes over R is easier than over
Z4).
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What Did We Do?

In this work, we are interested in studying linear codes over
Z2 (Z2 + uZ2) which are R-submodules of Zα

2 Rβ.

We also investigate structure of self-dual codes over these
submodules.
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The structure of such a submodule is a little bit different than
the structure of Z2Z4 in the sense that for any element
a ∈ Z4 the standard multiplication aZ2 is well defined to be
an element in Z2.

But for Z2 (Z2 + uZ2) that is not the case. For example if
u ∈ Z2 + uZ2, the standard multiplication u · 1 = u /∈ Z2.
Hence, in studying linear codes over Z2 (Z2 + uZ2) our first
step was to introduce a well-defined multiplication of
uZ2 ∈ Z2. Then based on this multiplication, we will define
linear codes over Z2 (Z2 + uZ2).
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Well-defined Multiplication Over Z2R

Let n = α + 2β where α, β are positive integers. Consider the
finite field Z2 = {0, 1} and the finite ring R = {0, 1, u, u + 1}
where u2 = 0.
It is known that the ring Z2 is a subring of the ring R. We define
the set

Z2R = {(e1, e2) | e1 ∈ Z2 and e2 ∈ R} .
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Further define the mapping

η : R→ Z2

η (r + uq) = r.

i.e., η(0) = 0, η(1) = 1, η(u) = 0 and η(u + 1) = 1.

It is clear that the mapping η is a ring homomorphism. Now for
any element d ∈ R, define the following R-scalar multiplication on
Z2R as

d (e1, e2) = (η(d)e1, de2) .
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Definition

This is a well-defined scalar multiplication. In fact this
multiplication can be extended over Zα

2 × Rβ in the following way:
for any d ∈ R and v = (a0, a1, ..., aα−1,b0, b1, ..., bβ−1) ∈ Zα

2 × Rβ

dv =
(
η(d)a0, η(d)a1, ..., η(d)aα−1,db0, db1, ..., dbβ−1

)
.
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Lemma

Zα
2 × Rβ is an R−module under the above definition.
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Type of a Code
Gray Map and Binary Images
Generator and Parity-check Matrices
Dual Code
Weight Enumerators

Z2Z2[u]-linear Codes

Definition (Aydogdu et. al.)

A non-empty subset C of Zα
2 × Rβ is called a Z2Z2[u]-linear code

if C is an R-submodule of Zα
2 × Rβ.
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Differences Between Z2Z2[u]-linear Codes and
Z2Z4-additive Codes

In the case of Z2Z4−additive codes, subgroups of Zα
2 ×Z

β
4

are the same as Z4-submodules of Zα
2 ×Z

β
4 and hence a

non-empty subset C of Zα
2 ×Z

β
4 is called a Z2Z4-additive

code if C is a subgroup (or Z4−submodule) of Zα
2 ×Z

β
4 .

On the other hand, subgroups of Zα
2 × Rβ are different than

R−submodules of Zα
2 × Rβ. The subgroups of Zα

2 × Rβ are
closed only under binary operation while submodules are
subgroups of Zα

2 × Rβ that are also closed under
multiplications by elements in the ring R.
This is the reason for referring to them as Z2Z2[u]−linear
codes and not additive codes as the case of Z2Z4.
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For a ∈ R, there exists unique r1, q1 ∈ Z2 such that
a = r1 + uq1.

We note that the ring R is isomorphic Z2
2 as an additive

group.

Hence, if C is a Z2Z2[u]−linear code then it is isomorphic to

a group of the form Z
k0
2 ×Z

2k1
2 ×Z

k2
2 for some positive

integers k0 and k1.
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Let CF
β be the submodule,

CF
β = {(a, b) ∈ Zα

2 × Rβ | b free over Rβ} and dim(CF
β ) = k1.

Let D = C\CF
β = C0 ⊕ C1 such that

C0 = 〈{(a, ub) ∈ Zα
2 × Rβ | a 6= 0}〉 ⊆ C\CF

β

C1 = 〈{(a, ub) ∈ Zα
2 × Rβ | a = 0}〉 ⊆ C\CF

β .

Now, denote the dimension of C0 as a k0 and denote the dimension
of C1 as a k2.
Based on this discussion we have the following definition.
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Type of Z2Z2[u]-linear Codes

Definition

If C ⊆ Zα
2 × Rβ is a Z2Z2[u]-linear code, group isomorphic to

Z
k0
2 ×Z

2k1
2 ×Z

k2
2 , then C is called a Z2Z2[u]-additive(linear) code

of type (α, β, k0, k1, k2) where k0, k1, and k2 are defined above.
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The Gray Map

Definition

For r1 + uq1 = a ∈ R, r1, q1 ∈ Z2. Define the Gray map

Φ : Zα
2 × Rβ → Zn

2

Φ
(
x0, . . . xα−1, r0 + uq0, . . . rβ−1 + uqβ−1

)
=
(

x0, . . . xα−1, q0, . . . , qβ−1, r0 ⊕ q0, . . . , rβ−1 ⊕ qβ−1
)

where ri ⊕ qi = ri + qi mod 2 and n = α + 2β.
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The map Φ is an isometry which transforms the Lee distance
in Zα

2 × Rβ to the Hamming distance in Zn
2 .

Moreover, for any Z2Z2[u]-linear code C, we have that Φ (C)
is a binary linear code as well.

This property is not valid for the Z2Z4−additive codes. We
always have

wt(v) = wtH(v1) + wtL(v2)

where wtH(v1) is the Hamming of weight of v1 and wtL(v2) is the
Lee weight of v2.
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Definition

The binary image C = Φ(C) of a Z2Z2[u]-linear code C of type
(α, β, k0, k1, k2) is a binary linear code of length n = α + 2β and
size 2n. It is also called a Z2Z2[u]-linear code.
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The Standard Form of Generator Matrices

The standard forms of generator and parity-check matrices of a
Z2Z2[u]-linear code C were given as follows.

Theorem

Let C be a Z2Z2[u]-linear code of type (α, β; k0; k1, k2). Then the
generator and the parity-check matrices of C are given in the
following standard forms.

G =

 Ik0 A1 0 0 uT
0 S Ik1 A B1 + uB2
0 0 0 uIk2 uD


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The Standard Form of Parity-check Matrices

Theorem

H =

 −At
1 Iα−k0 −uSt 0 0

−Tt 0 −(B1 + uB2)t + Dt At −Dt Iβ−k1−k2

0 0 −uAt uIk2 0


where A, A1, B1, B2, D, S and T are matrices over Z2.

Joint work with Abidin KAYA Self-Dual Z2Z2 [u]−linear Codes



Introduction
Z2Z2 [u]-linear Codes

Self-Dual Z2Z2 [u]-linear Codes

Type of a Code
Gray Map and Binary Images
Generator and Parity-check Matrices
Dual Code
Weight Enumerators

Inner Product

For any elements

v =
(
a0, . . . , aα−1, b0, . . . , bβ−1

)
,

w =
(
d0, . . . , dα−1, e0, . . . , eβ−1

)
∈ Zα

2 × Rβ,

define the inner product

〈v, w〉 =
(

u
α−1

∑
i=0

aidi +
β−1

∑
j=0

bjej

)
∈ Z2 + uZ2.
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The Dual Z2Z2[u]-linear Code C⊥

Definition

Let C be any Z2Z2[u]-linear code. Define the dual of C to be the
code

C⊥ =
{

w ∈ Zα
2 × Rβ| 〈v, w〉 = 0 ∀v ∈ C

}
.

Corollary

If C is a Z2Z2[u]-linear code of type (α, β; k0; k1, k2) then dual
code C⊥ is of type (α, β; α− k0; β− k1 − k2, k2).
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Weight Enumerators

Let C be a Z2Z2[u]-linear code of type(α, β; k0; k1, k2) with
n = α + 2β. Then weight enumerator of C is defined as

WC(x, y) = ∑
c∈C

xn−w(c)yw(c).
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Theorem

Let C be a Z2Z2[u]−linear code. The relation between the weight
enumerators of C and its dual is:

WC⊥ (x, y) =
1
|C|WC (x + y, x− y) .
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The Structure of Self-Dual Z2Z2[u]-linear Codes

Lemma

If C is a self-dual Z2Z2[u]-linear code then C is of type
(2k0, 2k1 + k2; k0; k1, k2).

Proof.

Since C is a self-dual Z2Z2[u]-linear code, C = C⊥. So, types of
the C and its dual have to be equal. Hence,

(α, β; k0; k1, k2) = (α, β; α− k0; β− k1 − k2, k2)

and we have α = 2k0 and β = 2k1 + k2.
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Corollary

If C is a self-dual Z2Z2[u]-linear code of type (α, β; k0; k1, k2) and
length n, then both α and n are even.

Corollary

Let kt denote the tuple (k, k, . . . , k) of length t. If C is self-dual
then (0α, uβ) is clearly a codeword in C.
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Lemma

Let C be a self-dual Z2Z2[u]-linear code. Let Cα be the punctured
code of C by deleting the coordinates outside α. Denote the binary
subcode of C by (Cb) which actually contains all order two
codewords and denote the dimension of (Cb)α by k0. Then (Cb)α is
a binary self-dual code.

Proof.

Since C is self-dual then is of type (2k0, 2k1 + k2; k0; k1, k2). For
any pair of codewords (x, y), (x′, y′) ∈ Cb we have y and y′ are
orthogonal vectors. So, x and x′ are also orthogonal to each other.
Moreover, (Cb)α has dimension k0 and is of length 2k0. Hence we
have (Cb)α is self-dual.
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Separable Z2Z2[u]-linear Codes

Definition

Let C be Z2Z2[u]-linear code. Let Cα(respectively Cβ) be the
punctured code of C by deleting the coordinates outside α
(respectively β). If C = Cα × Cβ then C is called separable.

If C is a separable Z2Z2[u]-linear code of (α, β; k0; k1, k2) then it
has the following generator matrix.

G =

 Ik0 A1 0 0 0
0 0 Ik1 A B1 + uB2
0 0 0 uIk2 uD


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Theorem

Let C be a self-dual Z2Z2[u]-linear code of type
(2k0, 2k1 + k2; k0; k1, k2). Then the following statements are
equivalent.

Cα is a binary self-dual code.

Cβ is a self-dual code over R.

|Cα| = 2k0 and |Cβ| = 22k1+k2 .

C is separable.
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Theorem

If C is a binary self-dual code of length α and D is a self-dual code
over R of length β. Then C ×D is a self-dual Z2Z2[u]-linear code
of length α + β.

Proof.

Let v = (v0, v1, . . . , vα−1), v′ = (v′0, v′1, . . . , v′α−1) ∈ C and
w = (w0, w1, . . . , wβ−1), w′ = (w′0, w′1, . . . , w′α−1) ∈ D. Since
both of C and D are self-dual,

〈(v, w), (v′, w′)〉 = u
α−1

∑
i=0

viv′i +
β−1

∑
i=0

wiw′i ≡ 0 (mod 2).

Therefore, C ×D is self-orthogonal.
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Lemma

Let C and D are self-dual Z2Z2[u]-linear codes of type
(α, β; k0; k1, k2) and (α′, β′; k′0; k′1, k′2) respectively. Then C ×D is a
self-dual Z2Z2[u]-linear code of type
(α + α′, β + β′; k0 + k′0; k1 + k′1, k2 + k′2).

Corollary

There exists self-dual Z2Z2[u]-linear codes of type (α, β; k0; k1, k2)
for all even α and all β.
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Type 0, Type I and Type II Z2Z2[u]-linear Codes

Definition

Let C be a self-dual Z2Z2[u]-linear code.

If codewords of C have an odd weights then C is called Type 0.

If C has only even weights then it is said to be Type I.

If all codewords of C have the doubly-even weight then it is
said to be Type II.
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Type 0, Type I and Type II Z2Z2[u]-linear Codes

Definition

Let C be a self-dual Z2Z2[u]-linear code.

If codewords of C have an odd weights then C is called Type 0.

If C has only even weights then it is said to be Type I.

If all codewords of C have the doubly-even weight then it is
said to be Type II.
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Definition

Let C be a binary code and c ∈ C. C is called antipodal if
c + 1 ∈ C. In the case, where C is a Z2Z2[u]-linear code, we say
C is antipodal if Φ(C) is antipodal.

It is clear that a Z2Z2[u]-linear code C is antipodal if and only if
(1α, uβ) ∈ C.
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Theorem

Let C ⊆ Zα
2 × Rβ be a self-dual code. C is antipodal if and only if

C is of Type I or Type II.

Proof.

We know that C is antipodal if and only if (1α, uβ) ∈ C and also it
is obvious that (0α, uβ) ∈ C. Therefore we have, C is antipodal if
and only if (1α, 0β) ∈ C. This means that all codewords of Cα have
even weight.
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Theorem

Let C be a self-dual Z2Z2[u]-linear code. If C is separable then C
is antipodal.

Proof.

Assume that C = Cα × Cβ is separable where Cα and Cβ are

self-dual codes over Zα
2 and Rβ respectively. Hence Cα contains

all-1 vector and Cβ contains all-u vector then (1α, uβ) ∈ C.

Corollary

If C is a self-dual Z2Z2[u]-linear code of Type 0, then C is
non-separable and non-antipodal.
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Type 0

Example

Let

C0 = {(0, 0, 0, 0), (1, 1, 0, u), (0, 1, 1, 1), (1, 0, 1, 1 + u), (0, 0, u, u),
(1, 1, u, 0), (0, 1, 1 + u, 1 + u), (1, 0, 1 + u, 1)}

be a Z2Z2[u]-linear code of type (2, 2; 1; 1, 0). Then C0 is self-dual
Type 0 code.
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Separable Type I

Example

Let C1 be a self-dual Z2Z2[u]-linear code of type (2, 3; 1; 1, 1) with
the generator matrix of the following form.

G1 =

 1 1 0 0 0
0 0 1 0 1
0 0 0 u 0


Therefore, C1 is a Type I separable code and its image Φ(C1) is
[8, 3, 2]-binary code.
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Non-separable Type I

Example

A Z2Z2[u]-linear code D1 of type (4, 5; 2; 2, 1) with the generator
matrix,

G =


1 0 1 0 0 0 0 u u
0 1 0 1 0 0 0 u u
0 0 1 1 1 0 0 u 1 + u
0 0 1 1 0 1 0 1 + u u
0 0 0 0 0 0 u 0 0


is a self-dual non-separable Type I code.
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Separable Type II

Example

Let C2 ⊆ Z8
2 × R4 be a self-dual code with generator matrix G2.

G2 =



1 0 1 0 1 0 1 0 0 0 0 0
0 1 1 0 0 1 1 0 0 0 0 0
0 0 1 1 0 0 1 1 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 u 0 u
0 0 0 0 0 0 0 0 0 0 u u


Therefore, C2 is a separable Type II code. Note that, in the above
generator matrix, Cα is the binary extended Hamming code of
length 8.
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Non-separable Type II

Example

D2 is a non-separable Type II self-dual Z2Z2[u]-linear code with
below generator matrix.

1 0 0 0 1 0 0 0 0 0 0 u
0 1 0 0 0 1 0 0 0 0 0 u
0 0 1 0 0 0 1 0 0 0 0 u
0 0 0 1 0 0 0 1 0 0 0 u
0 0 0 0 1 1 1 1 1 1 1 1 + u
0 0 0 0 0 0 0 0 0 u 0 u
0 0 0 0 0 0 0 0 0 0 u u


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